Comment on "Regional Versus Global Entanglement in Resonating-Valence-Bond States"

In a recent Letter [1], Chandran et al. study the entanglement properties of valence bond (VB) states. Their main result is that VB states do not contain (or contain only an insignificant amount of) two-site entanglement, whereas they possess multibody entanglement. Two examples ("RVB gas and liquid") are given to illustrate this claim, which essentially comes from a lower bound derived for spin correlators in VB states. While we do not question that two-site entanglement is generically "small" for isotropic VB states, we show in this Comment that (i) for the "RVB liquid" on the square lattice, the calculations and conclusions of Ref. [1] are incorrect, (ii) a simple analytical calculation gives the exact value of the correlator for the "RVB gas," showing that the bound found in Ref. [1] is tight, and (iii) the lower bound for spin correlators in VB states is equivalent to a celebrated result of Anderson dating from more than 50 years ago.

The $S U(2)$ symmetry of VB states guarantees that any two-spin reduced density matrix is characterized by a single parameter p related to the correlator $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle=$ $-3 / 4 p$ between these spins ("Werner state"). The two spins are entangled if $p>1 / 3$. Chandran et al. used quantum information concepts such as monogamy of entanglement and quantum telecloning to obtain bounds on p.
(i) The "RVB liquid" is the equal amplitude superposition of all nearest-neighbor (NN) VB coverings of a lattice. Exact results can be obtained for small sizes L of the square $L \times L$ lattice. For $L=4$, we do not recover the value $p \simeq 0.2004$ of Ref. [1], but find $p=$ 0.4457579115872 for periodic boundary conditions (BC) and $p=0.2281115037$ in the interior of a sample with open BC. However, what really matters is the behavior for large L. We computed by Monte Carlo calculations [2] the NN correlator $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle$ for square lattices up to $L=128$, using periodic BC . We find $p=0.3946(3)>1 / 3$ in the thermodynamic limit, resulting in an entanglement of formation of $\simeq 0.0215$. Therefore, the "RVB liquid" on the square lattice does possess two-site (NN) entanglement, contrary to the claim of Ref. [1].
(ii) The "RVB gas" is the equal amplitude superposition of all bipartite VB coverings of a bipartite lattice. This is in fact the projection into the singlet sector of the (magnetically ordered) Néel state on this lattice. This observation can be used to calculate p exactly. The total spins S_{A} and S_{B} on sublattices A and B are maximal, couple antiferro-
magnetically, and form a singlet (total spin $S=0$). For a system of $2 N$ spins, $S_{A}=S_{B}=N / 2$. One then easily obtains that $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle=-1 / 4-1 /(2 N)$ if i and j belong to different sublattices. The equivalent exact result $p=$ $1 / 3+2 /(3 N)$ shows that the telecloning bound $p \leq$ $1 / 3+2 /(3 N)$ is tight. Two-site entanglement is therefore present in any finite "RVB gas" and vanishes only in the thermodynamic limit.
(iii) The telecloning bound on p in Ref. [1] reproduces an inequality of Anderson [3], who derived a lower bound for the energy of antiferromagnetic spin models. Take a spin at site i, separated by any distance from a number z of symmetry-equivalent spins $j:\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle$ is identical for all z spins at sites j. In this case, the telecloning bound is $p \leq$ $1 / 3+2 /(3 z)$ or equivalently $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle \geq-1 / 4-1 /(2 z)$, the result derived by Anderson. His result (of variational nature) on correlators is very general: it holds also for states other than singlets, is independent of any Hamiltonian and can be refined further (see, e.g., Ref. [4]).

In conclusion, the bound obtained with quantum information techniques [1] has been familiar in the condensed matter context for a long time. Nevertheless, it is interesting to see that it can be derived in a totally different framework. For the two examples chosen in Ref. [1], typical condensed matter methods allowed us to provide in one case an exact solution, and to show that the results of Ref. [1] are incorrect in the other one.

Fabien Alet and Daniel Braun
Laboratoire de Physique Théorique, IRSAMC,
Université de Toulouse
UPS, F-31062 Toulouse, France
CNRS, LPT (IRSAMC),
F-31062 Toulouse, France
Grégoire Misguich
Institut de Physique Théorique
URA CNRS 2306, CEA Saclay, 91191 Gif sur Yvette, France

Received 21 April 2008; revised manuscript received
10 June 2008; published 10 December 2008
DOI: 10.1103/PhysRevLett.101.248901
PACS numbers: 03.67.-a, 74.20.Mn
[1] A. Chandran et al., Phys. Rev. Lett. 99, 170502 (2007).
[2] We generalized the algorithm of A. W. Sandvik and R. Moessner, Phys. Rev. B 73, 144504 (2006) to account for VB overlap properties.
[3] P. W. Anderson, Phys. Rev. 83, 1260 (1951).
[4] R. Tarrach and R. Valentí, Phys. Rev. B 41, 9611 (1990).

